
Mason Stott, Julian Halloy, Arthur Jur, Jihun Kim

NPC Behavior in Games



Motivation
● Non-Player Characters (NPCs) are integral parts of many video games

● Game developers are seeking effective methods to implement complex NPC 

behavior without incurring high development costs.

● There are growing expectations of players for intelligent and responsive NPCs.



Related Work
● FSM:  S. Saini, P. W. H. Chung and C. W. Dawson, "Mimicking human strategies in fighting games using a Data 

Driven Finite State Machine," 2011 6th IEEE Joint International Information Technology and Artificial Intelligence 

Conference, 2011.

● Behavior Trees:  G. Robertson and I. Watson, "Building behavior trees from observations in real-time strategy 

games," 2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA), Madrid, 

Spain, 2015.

● GOAP:  J. Orkin, “Three States and a Plan: The A.I. of F.E.A.R.” Game Developers Conference, 2006.

● Utility AI:  M. Świechowski, "Fuzzy Utility AI for Handling Uncertainty in Video Game Bots Implementation," 2024 

IEEE Congress on Evolutionary Computation (CEC), Yokohama, Japan, 2024.



Research Questions
● What are the benefits and drawbacks of various video game non-player 

character design patterns?

● Do we see more compelling behavior as a result of more complex 

approaches?

● How can one decypher which approach would be best applied to their 

unique project?



Gaps in Existing Research
● While there has been research done on different algorithms, there still is not 

an abundance of research on comparing these algorithms in similar game 

environments.

● Algorithms vary in their ease of implementation, adaptability, and 

transparency, which can even vary based on scenario.

● It would be helpful to know which algorithms are best in which scenarios.



Methods



Approaches

Finite State 
Machine

Create a set of states each 
associated with a certain 
action. States are changed 

based on the possible 
transitions explicitly defined 

by the developer. These 
transitions can be based on 

previous state and/or 
variable values.

Behavior Tree

Break down the AI’s tasks into 
smaller, reusable nodes that 
are executed in a tree-like 
structure. Manage complex 
behaviors of entities in a 
modular and manageable 

way. 

Goal Oriented 
Action Planning
Create a sequence actions for 
the agent to achieve one of 

the desired goal(s). Each 
action has preconditions and 
effects, which allow the agent 
to plan based on the current 

environment.

Utility AI

Update considerations about 
the world every tick and use 

them to calculate “utility 
score” for every available 
action. Perform the action 
with the highest evaluated 

utility.



Desired Behavior
We needed all of our approaches to have to same goals in order to be 
able to compare the results, so defining what we wanted NPCs to be 
able to do was crucial.

NPCs in our study are allowed the following possible actions:
● Shoot at the player.
● Throw a grenade towards the player.
● Move towards the player.
● Heal if health is low and in relative safety.



Base 
Implementation
For the foundation of our project, we built 
a simple isometric shooter game in which 
the player could walk around and fire a 
weapon.

Enemy behavior was implemented 
logically but they had no “brain” 
controlling them, which is where the 
approaches we’re investigating come in.



Results / Observations



Finite State Machine
● Implementation:

○ EnemyAIBrain contained several different states which covered the different 

actions the NPCs could take and transitioned between them based on 

explicitly defined transitions which could be based on the previous state or 

variables.

● Observed behavior:

○ Enemies have an explicitly defined routine where they select a location, move 

until reaching it, then stop and take and action based on environmental 

variables 

● Benefits

○ The behavior of NPCs can be explicitly defined to occur in a specific order

● Drawbacks

○ The more complex an NPC is, the harder it can be to keep track of state 

transitions and decide what the “best” transitions are.

○ Complex behaviors may lead to code bloating and increased bugs



Behavior Tree
● Implementation:

○ Selector Nodes : Tries each child node (behaviors) in order based on conditions

○ Sequence Nodes : Run all child nodes sequentially. 

■ ex. Check Player in range -> Check Cooldown -> Shoot/Throw Grenade

○ Action Nodes : Actions to be executed, like healing, moving, shooting, or throwing a 

grenade.

○ Condition Nodes : Check whether the player is in range for a shoot.

● Observed behavior:

○ The enemy decides whether to attack, move, or use grenades based on the player’s 

position, health, cooldowns, and other conditions.

● Benefits

○ Each node represents a self-contained task or condition, so it is easy to add new 

behaviors without modifying a lot of code. (Flexible and Scalable)

● Drawbacks

○ The transition between behaviors can feels a bit too rigid. If the AI is not designed 

carefully, it could become unnatural and predictable.





GOAP
● Implementation:

○ EnemyAIBrain  contains the actions, goals, and beliefs held by the agent.
○ AgentAction  class: contains preconditions and effects of the action. Also 

contains the IActionStrategy  interface used to perform the action.
○ AgentGoal  class: contains priority and desired effects.
○ AgentBelief  class: contains beliefs of the agent, such as if a condition is true or 

an observed location.
● Observed behavior:

○ The enemies exhibited expected behavior such as chasing the player, 
shooting the player when they were in range and had line-of-sight, and 
throwing grenades at the player.

● Benefits
○ The addition of more actions and goals is fairly simple, and can greatly 

increase the complexity of the agent behavior.
● Drawbacks

○ Complex initial implementation.





Utility AI
● Implementation:

○ AIBrain maintains a list of available actions, each action has utility 

evaluated by aggregating the scores of its relevant considerations.

● Observed behavior:

○ More prone to emergent behavior (most notably, the NPCs would tend 

to stay behind walls and throw grenades rather than shoot in the 

open).

● Benefits

○ Relatively simple implementation.

○ Can produce emergent behavior which feels more natural.

● Drawbacks

○ Tuning considerations/curves can be time consuming.

○ With emergent behavior, debugging can become more difficult.



Final Behavior (Utility AI)

https://docs.google.com/file/d/1O8qZrMuRju9rxK0Fwlw95Jpgua1vACbC/preview


Threats to Validity
● Internal: We divided the implementations between group members. However, we do not 

all have the same amount of experience. This may influence our opinion of ease of 

implementation. To mitigate this, we reviewed each others implementations and 

decided on implementation difficulty as a group.

● External: We specifically use Unity for implementation. Other game engines may 

increase or decrease the difficulty of implementation.

● Construct: We can only assess the results of these implementations qualitatively, as 

doing so quantitatively would likely involve a large survey of numerous playtesters, 

which we of course do not have the means to perform adequately.



Conclusions
● The right approach for NPC behavior is heavily dependent on the type of game you are trying to 

make.

● As complexity of your implementation increases, you don’t necessarily see a benefit in resultant 

behaviors.

● When to use…

○ FSM - When action space is relatively small and transitions are easy to manage.

○ BT - When state machine transitions become too hard to manage and considerations become 

more complex.

○ GOAP - When complex but predictable behavior is desired and action space is relatively 

large.

○ Utility AI - When action space is large and/or emergent behavior is beneficial (less 

predictable).



Future Work
● Investigate different gameplay scenarios to paint a better picture of the 

strengths and weaknesses of each approach.

● Compare ML Agents to these traditional paradigms.

● Investigate hybrid approaches (Utility AI in particular has many principals 

that may enhance other approaches).



Questions?



Thank You!



Editable Icons


